Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 1996 Mar 15;271(11):6137-43.

Real time kinetics of the DnaK/DnaJ/GrpE molecular chaperone machine action.

Author information

  • 1Division of Biophysics, Department of Molecular Biology, University of Gdansk, Poland.

Abstract

Applying stopped-flow fluorescence spectroscopy for measuring conformational changes of the DnaK molecular chaperone (bacterial Hsp70 homologue) and its binding to target peptide, we found that after ATP hydrolysis, DnaK is converted to the DnaK*(ADP) conformation, which possesses limited affinity for peptide substrates and the GrpE cochaperone but efficiently binds the DnaJ chaperone. In the presence of DnaJ (bacterial Hsp40 homologue), the DnaK*(ADP) form is converted back to the DnaK conformation, and the resulting DnaJ-DnaK(ADP) complex binds to peptide substrates more tightly. Formation of the DnaJ(substrate-DnaK(ADP)) complex is a rate-limiting reaction. The presence of GrpE and ATP hydrolysis promotes the fast release of the peptide substrate from the chaperone complex and converts DnaK to the DnaK*(ADP) conformation. We conclude that in the presence of DnaJ and GrpE, the binding-release cycle of DnaK is stoichiometrically coupled to the adenosine triphosphatase activity of DnaK.

PMID:
8626401
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk