Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Anal Biochem. 1996 Apr 5;236(1):153-60.

Calibration of oxygen-dependent quenching of the phosphorescence of Pd-meso-tetra (4-carboxyphenyl) porphine: a phosphor with general application for measuring oxygen concentration in biological systems.

Author information

  • 1Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, 19104, USA.

Abstract

Oxygen-dependent quenching of phosphorescence is a function of the frequency of collision between the phosphor and molecular oxygen and of the efficiency of energy transfer during these collisions. Thus, quenching is dependent on the rate of diffusion of the phosphor and its molecular environment. For measurements in biological samples, the Pd-porphyrin is bound to serum albumin, and this provides a uniform microenvironment for the phosphor which is relatively unaffected by changes in the pH and ionic composition of the medium. Calibration of the phosphor is of particular value because it is absolute, i.e., the calibration is valid independent of the laboratory and the time of measurement. This paper reports the calibration constants determined for Pd-meso-tetra (4-carboxyphenyl) porphine, as measured by two independent methods: by stoichiometric titration of the oxygen with ascorbate in the presence of ascorbate oxidase and by comparison with a high-accuracy oxygen electrode. The measurements were carried out in a specially designed thermostatted vessel in which the oxygen electrode and phosphorescence lifetime measurements of oxygen were made simultaneously. The calibration constants for the oxygen-dependent quenching of the phosphorescence of Pd-meso-tetra (4-carboxyphenyl) porphine were determined as a function of albumin concentration, ionic strength in medium, pH, and temperature.

PMID:
8619481
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk