Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Clin Invest. 1996 Mar 15;97(6):1471-7.

Tumor necrosis factor-alpha- and hyperglycemia-induced insulin resistance. Evidence for different mechanisms and different effects on insulin signaling.

Author information

  • 1IV Abteilung Medizinische Klinik und Poliklinik, Eberhard-Karls Universität, Tubingen, Germany.

Abstract

Inhibition of insulin receptor signaling by high glucose levels and by TNF-alpha was recently observed in different cell systems. The aim of the present study was to characterize the mechanism of TNF-alpha-induced insulin receptor inhibition and to compare the consequences of TNF-alpha- and hyperglycemia-induced insulin receptor inhibition for signal transduction downstream from the IR. TNF-alpha (0.5-10 nM) and high glucose (25 mM) showed similar rapid kinetics of inhibition (5-10 min, > 50%) of insulin receptor autophosphorylation in NIH3T3 cells overexpressing the human insulin receptor. TNF-alpha effects were completely prevented by the phosphotyrosine phosphatase (PTPase) inhibitors orthovanadate (40 microM) and phenylarsenoxide (35 microM), but they were unaffected by the protein kinase C (PKC) inhibitor H7 (0.1 mM), the phosphatidylinositol-3 kinase inhibitor wortmannin (5 microM), and the thiazolidindione troglitazone (CS045) (2 microgram/ml). In contrast, glucose effects were prevented by PKC inhibitors and CS045 but unaffected by PTPase inhibitors and wortmannin. To assess effects on downstream signaling, tyrosine phosphorylation of the following substrate proteins of the insulin receptor was determined: insulin receptor substrate-1, the coupling protein Shc, focal adhesion kinase (FAK125), and unidentified proteins of 130 kD, 60 kD. Hyperglycemia (25 mM glucose) and TNF-alpha showed analogous (> 50% inhibition) effects on tyrosine phosphorylation of insulin receptor substrate-1, Shc, p60, and p44, whereas opposite effects were observed for tyrosine phosphorylation of FAK125, which is dephosphorylated after insulin stimulation. Whereas TNF-alpha did not prevent insulin-induced dephosphorylation of FAK125, 25 mM glucose blocked this insulin effect completely. In summary, the data suggest that TNF-alpha and high glucose modulate insulin receptor-signaling through different mechanisms: (a) TNF-alpha modulates insulin receptor signals by PTPase activation, whereas glucose acts through activation of PKC. (b) Differences in modulation of the insulin receptor signaling cascade are found with TNF-alpha and high glucose: Hyperglycemia-induced insulin receptor inhibition blocks both insulin receptor-dependent tyrosine phosphorylation and dephosphorylation of insulin receptor substrate proteins. In contrast, TNF-alpha blocks only substrate phosphorylation, and it does not block insulin-induced substrate dephosphorylation. The different effects on FAK125 regulation allow the speculation that long-term cell effects related to FAK125 activity might develop in a different way in hyperglycemia- and TNF-alpha-dependent insulin resistance.

PMID:
8617880
[PubMed - indexed for MEDLINE]
PMCID:
PMC507207
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Journal of Clinical Investigation Icon for PubMed Central
    Loading ...
    Write to the Help Desk