Format

Send to:

Choose Destination
See comment in PubMed Commons below
Circ Res. 1996 Jan;78(1):82-90.

Hypoxia and hypoxia/reoxygenation activate Raf-1, mitogen-activated protein kinase kinase, mitogen-activated protein kinases, and S6 kinase in cultured rat cardiac myocytes.

Author information

  • 1Third Department of Internal Medicine, Faculty of Medicine, University of Tokyo, Japan.

Abstract

In response to hypoxia and reoxygenation, mammalian cells are known to express a variety of genes to adapt to these external stresses or lead to further cell damage. We investigated the intracellular signaling cascades in cultured rat cardiac myocytes subjected to hypoxia followed by reoxygenation (hypoxia/reoxygenation). Here, we show that both hypoxia and hypoxia/reoxygenation caused rapid activation of the mitogen-activated protein kinase kinase kinase (MAPKKK), activity of Raf-1. This was followed by the sequential activation of mitogen-activated protein kinase kinase (MAPKK), mitogen-activated protein (MAP) kinases, and S6 kinase (p90rsk). Furthermore, hypoxia caused hyperphosphorylation of Raf-1. The maximal hyperphosphorylation of Raf-1 appeared to be accompanied by a significant decrease in MAPKKK activity. These results strongly suggest the following: (1) Intracellular signals initiated by both hypoxia and hypoxia/reoxygenation converge on Raf-1 and activate its MAPKKK activity. Then, Raf1 activates downstream serine/threonine kinases including MAPKK, MAP kinases and p90rsk. (2) Raf-1 is not only located upstream from MAPKK and MAP kinases but also may be phosphorylated by MAP kinases directly or indirectly, and at least Raf-1 kinase activity may be downregulated by this feedback mechanism.

PMID:
8603510
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk