Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 1996 Jan 26;271(4):1966-71.

Strand displacement synthesis of the long terminal repeats by HIV reverse transcriptase.

Author information

  • 1Department of Microbiology & Immunology, University of Rochester, School of Medicine and Dentistry, New York 14642, USA.


According to the current model for retroviral replication, strand displacement of the long terminal repeat (LTR) is a necessary step during plus strand DNA synthesis in vivo. We have investigated the ability of human immunodeficiency virus reverse transcriptase (HIV-RT) to synthesize in vitro over a 634-nucleotide HIV LTR DNA template, having or lacking a single full-length DNA downstream primer. The presence of the downstream primer resulted in an approximately 12-fold reduction in the rate of upstream primer elongation. Addition of Escherichia coli single-stranded binding protein (SSB) or human replication protein A (RP-A) enhanced strand displacement synthesis; however, addition of HIV nucleocapsid protein (NC) did not. The presence of excess single-stranded DNA complementary to the downstream primer did not stimulate displacement synthesis. Interestingly, we observed that the elongating upstream primer could readily transfer to this DNA. This observation suggests that recombination is favored during strand displacement synthesis in vivo.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk