Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
FASEB J. 1996 Jan;10(1):27-34.

The denatured state (the other half of the folding equation) and its role in protein stability.

Author information

  • Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.

Abstract

Experimental studies of the physical interactions that stabilize protein structure are complicated by the fact that proteins do not unfold to a simple reference state. When their folded structure breaks down, protein chains do not become random coils. Instead, they enter a poorly understood ensemble of partially folded states known collectively as the denatured state. Although it has long been held that agents that promote protein unfolding act specifically on the denatured state, the idea that mutations can exert their destabilizing (or in some cases, stabilizing) effects directly on this state is not widely accepted. A large body of thermodynamic data on mutant proteins plus a limited amount of structural information describing mutational effects on denatured states indicate that 1) the denatured state plays a central role in all aspects of protein stability, including mutant effects, and 2) a quantitative understanding of how amino acid sequence encodes protein structure will probably depend on a more complete picture of this complex, difficult-to-study state.

PMID:
8566543
[PubMed - indexed for MEDLINE]
Free full text

LinkOut - more resources

Full Text Sources

Other Literature Sources

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk