Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Toxicology. 1995 Dec 15;104(1-3):105-11.

Antagonism of cyanide toxicity by isosorbide dinitrate: possible role of nitric oxide.

Author information

  • 1Dept. of Pharmacology and Toxicology, Purdue University, West Lafayette, IN 47907-1334, USA.

Abstract

In a search for improved cyanide antidotes, the efficacy of isosorbide dinitrate (ISDN), was compared with that of the known cyanide antidote, NaNO2. ISDN was as effective as an optimal dose of NaNO2 in protecting mice against cyanide lethality. To study the mechanism involved, the extent of formation of the cyanide scavenger, methemoglobin, in the action of ISDN was determined. ISDN (300 mg/kg, p.o.) increased methemoglobin from 5 to 10% of total hemoglobin, while, in contrast, NaNO2 (100 mg/kg, i.p.) increased methemoglobin levels to 50% of total hemoglobin. Lowering the dose of NaNO2 to 30 mg/kg reduced methemoglobin levels to approximately 10% of total hemoglobin and in turn nearly abolished its antidotal effect. Decreasing methemoglobin to less than control levels using methylene blue failed to abolish cyanide antagonism by ISDN. Thus, methemoglobin formation by ISDN does not account for its antidotal action. Further studies comparing the respiratory depressant effects of cyanide in the presence of ISDN or NaNO2 also indicated that these two antidotes have different mechanisms of action. Efforts to produce tolerance to the antidotal effect of ISDN against cyanide toxicity were unsuccessful. It is suggested that the well-known ability of ISDN to generate nitric oxide may account for the noted cyanide antagonism.

PMID:
8560488
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk