Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Free Radic Biol Med. 1995 Nov;19(5):591-8.

Biokinetics in humans of RRR-alpha-tocopherol: the free phenol, acetate ester, and succinate ester forms of vitamin E.

Author information

  • 1Department of Biology & Biochemistry, Brunel University, Uxbridge, UK.

Abstract

The bioavailability of RRR-alpha-tocopherol from the oral administration of RRR-alpha-tocopherol itself and its acetate and succinate esters was determined in healthy human subjects. Venous blood samples were withdrawn periodically over a 51-h period following oral administration of a gelatin capsule containing an equimolar mixture of RRR-alpha-tocopherol and RRR-alpha-tocopheryl acetate. In a second study, subjects received a capsule containing an equimolar mixture of RRR-alpha-tocopheryl acetate and RRR-alpha-tocopheryl succinate. In Study 1, RRR-alpha-tocopherol was absorbed at similar rates from both the free phenol, and the acetate ester and maximum plasma levels occurred at 12 h in most subjects. The extent of absorption of RRR-alpha-tocopherol varied considerably between subjects in absolute terms, but the relative absorption from the two forms was remarkably consistent, and a ratio of 1.0 was found for parameters of relative bioavailability in plasma. The concentration of RRR-alpha-tocopherol from each form was maximal at approximately 27 h in red blood cells and, as seen with the plasma data, there was a large interindividual variability. In Study 2, there was no significant difference in the extent of absorption of RRR-alpha-tocopherol from the acetate ester and the succinate ester, although there was an apparently higher initial rate of absorption from the acetate ester.

PMID:
8529918
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk