Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
Mol Cell Biol. 1995 Dec;15(12):6663-9.

Modular structure of chromosomal proteins HMG-14 and HMG-17: definition of a transcriptional enhancement domain distinct from the nucleosomal binding domain.

Author information

  • 1Laboratory of Molecular Carcinogenesis, National Cancer Institute, Bethesda, Maryland 20892, USA.


Chromosomal proteins HMG-14 and HMG-17 are the only known nuclear proteins which specifically bind to the nucleosome core particle and are implicated in the generation and/or maintenance of structural features specific to active chromatin. The two proteins facilitate polymerase II and III transcription from in vitro- and in vivo-assembled circular chromatin templates. Here we used deletion mutants and specific peptides to identify the transcriptional enhancement domain and delineate the nucleosomal binding domain of the HMG-14 and -17 proteins. Deletion of the 22 C-terminal amino acids of HMG-17 or 26 C-terminal amino acids of HMG-14 reduces significantly the ability of the proteins to enhance transcription from chromatin templates. In contrast, N-terminal truncation mutants had the same transcriptional enhancement activity as the full-length proteins. We conclude that the negatively charged C-terminal region of the proteins is required for transcriptional enhancement. Chromatin transcription enhancement assays, which involve binding competition between the full-length proteins and peptides derived from their nucleosomal binding regions, indicate that the minimal nucleosomal binding domain of human HMG-17 is 24 amino acids long and spans residues 17 to 40. The results suggest that HMG-14 and -17 proteins have a modular structure and contain distinct functional domains.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk