Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 1993 Jun 15;90(12):5623-7.

Yeast calmodulin and a conserved nuclear protein participate in the in vivo binding of a matrix association region.

Author information

  • 1Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas 75235.

Abstract

Chromatin becomes reorganized during mitosis each cell cycle. To identify genes potentially involved in these supramolecular events, we have used a colony-color assay to screen temperature-sensitive mutants of Saccharomyces cerevisiae. When a sequence that mediates attachment to the nuclear matrix in vitro was inserted into the GAL1 promoter of a lacZ fusion gene, beta-galactosidase synthesis was inhibited. This observation permitted screening for temperature-sensitive-inducible mutants on 5-bromo-4-chloro-3-indolyl beta-D-galactoside plates. Only 1 of 20 complementation groups of newly isolated mutants exhibited temperature-sensitive inducibility for the matrix association region but not for control CEN3 or STE6 inserts--a cmd1 mutant in which the last 7 amino acids of calmodulin were truncated by an ochre termination codon. Another mutant (smi1) exhibited a rare phenotype at the nonpermissive condition, which included S phase and budding arrest. We cloned and sequenced the SMI1 gene, which encodes a 57-kDa polypeptide with evolutionarily conserved epitope(s) found in mammalian cell nuclei. Thus, we provide evidence for involvement of calmodulin and another conserved protein in the in vivo binding of a matrix association region.

PMID:
8516310
[PubMed - indexed for MEDLINE]
PMCID:
PMC46773
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk