Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 1993 Jun 15;90(12):5618-22.

Tuning the activity of an enzyme for unusual environments: sequential random mutagenesis of subtilisin E for catalysis in dimethylformamide.

Author information

  • 1Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena 91125.

Abstract

Random mutagenesis has been used to engineer the protease subtilisin E to function in a highly nonnatural environment--high concentrations of a polar organic solvent. Sequential rounds of mutagenesis and screening have yielded a variant (PC3) that hydrolyzes a peptide substrate 256 times more efficiently than wild-type subtilisin in 60% dimethylformamide. PC3 subtilisin E and other variants containing different combinations of amino acid substitutions are effective catalysts for transesterification and peptide synthesis in dimethylformamide and other organic media. Starting with a variant containing four effective amino acid substitutions (D60N, D97G, Q103R, and N218S; where, for example, D60N represents Asp-60-->Asn), six additional mutations (G131D, E156G, N181S, S182G, S188P, and T255A) were generated during three sequential rounds of mutagenesis and screening. The 10 substitutions are clustered on one face of the enzyme, near the active site and substrate binding pocket, and all are located in loops that connect core secondary structure elements and exhibit considerable sequence variability in subtilisins from different sources. These variable surface loops are effective handles for "tuning" the activity of subtilisin. Seven of the 10 amino acid substitutions in PC3 are found in other natural subtilisins. Great variability is exhibited among naturally occurring sequences that code for similar three-dimensional structures--it is possible to make use of this sequence flexibility to engineer enzymes to exhibit features not previously developed (or required) for function in vivo.

PMID:
8516309
[PubMed - indexed for MEDLINE]
PMCID:
PMC46772
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk