Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
Eur J Biochem. 1993 Jun 1;214(2):367-74.

Structural features of the human gene for muscle-specific enolase. Differential splicing in the 5'-untranslated sequence generates two forms of mRNA.

Author information

  • 1Istituto di Biologia dello Sviluppo del Consiglio Nazionale delle Ricerche, Palermo, Italy.

Erratum in

  • Eur J Biochem 1993 Dec 15;218(3):1095.


We report here the isolation and characterization of the human gene for the beta or muscle-specific isoform of the glycolytic enzyme enolase. The nucleotide sequence analysis revealed structural features, such as organization as 11 coding exons, the first exon consisting of an untranslated sequence and hence resembling sequences of the other two members of the gene family, the alpha and gamma enolase genes. The beta enolase locus spans about 6 kbp genomic DNA. Sequences matching the consensus sequence for muscle-specific regulatory factors are present in the 5'-flanking region and within the first intron. A combination of primer extension, S1 nuclease protection and RNA-sequencing experiments indicates that the gene has a unique transcriptional start site, 26 bp downstream of a TATA-like box; the differential usage of two donor sites within the untranslated exon I generates two alternatively spliced transcripts. The existence of the two mRNA, differing from one another in the presence or absence of a 42-nucleotide fragment in the leader sequence, was confirmed by cloning the corresponding cDNA using the rapid amplification of cDNA ends strategy. Secondary-structure predictions indicated that the leader sequences of the spliced forms could form hairpin structures with different free energies of formation, suggesting translational control.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Blackwell Publishing
    Loading ...
    Write to the Help Desk