Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
J Opt Soc Am A. 1993 Jan;10(1):127-40.

Propagation of photon-density waves in strongly scattering media containing an absorbing semi-infinite plane bounded by a straight edge.

Author information

  • 1Department of Physics, University of Illinois, Urbana-Champaign 61801.

Abstract

Light propagation in strongly scattering media can be described by the diffusion approximation to the Boltzmann transport equation. We have derived analytical expressions based on the diffusion approximation that describe the photon density in a uniform, infinite, strongly scattering medium that contains a sinusoidally intensity-modulated point source of light. These expressions predict that the photon density will propagate outward from the light source as a spherical wave of constant phase velocity with an amplitude that attenuates with distance r from the source as exp(-alpha r)/r. The properties of the photon-density wave are given in terms of the spectral properties of the scattering medium. We have used the Green's function obtained from the diffusion approximation to the Boltzmann transport equation with a sinusoidally modulated point source to derive analytic expressions describing the diffraction and the reflection of photon-density waves from an absorbing and/or reflecting semi-infinite plane bounded by a straight edge immersed in a strongly scattering medium. The analytic expressions given are in agreement with the results of frequency-domain experiments performed in skim-milk media and with Monte Carlo simulations. These studies provide a basis for the understanding of photon diffusion in strongly scattering media in the presence of absorbing and reflecting objects and allow for a determination of the conditions for obtaining maximum resolution and penetration for applications to optical tomography.

PMID:
8478741
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk