Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Mol Biol. 1993 Mar 20;230(2):543-74.

Backbone-dependent rotamer library for proteins. Application to side-chain prediction.

Author information

  • 1Department of Chemistry, Harvard University, Cambridge, MA 02138.

Abstract

A backbone-dependent rotamer library for amino acid side-chains is developed and used for constructing protein side-chain conformations from the main-chain co-ordinates. The rotamer library is obtained from 132 protein chains in the Brookhaven Protein Database. A grid of 20 degrees by 20 degrees blocks for the main-chain angles phi, psi is used in the rotamer library. Significant correlations are found between side-chain dihedral angle probabilities and backbone phi, psi values. These probabilities are used to place the side-chains on the known backbone in test applications for six proteins for which high-resolution crystal structures are available. A minimization scheme is used to reorient side-chains that conflict with the backbone or other side-chains after the initial placement. The initial placement yields 59% of both chi 1 and chi 2 values in the correct position (to within 40 degrees) for thermolysin to 81% for crambin. After refinement the values range from 61% (lysozyme) to 89% (crambin). It is evident from the results that a single protein does not adequately test a prediction scheme. The computation time required by the method scales linearly with the number of side-chains. An initial prediction from the library takes only a few seconds of computer time, while the iterative refinement takes on the order of hours. The method is automated and can easily be applied to aid experimental side-chain determinations and homology modeling. The high degree of correlation between backbone and side-chain conformations may introduce a simplification in the protein folding process by reducing the available conformational space.

PMID:
8464064
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk