Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Neurosci Biobehav Rev. 1993 Spring;17(1):91-128.

Prenatal malnutrition and development of the brain.

Author information

  • 1Worcester Foundation for Experimental Biology, Shrewsbury, MA.

Abstract

In this review, we have summarized various aspects as to how prenatal protein malnutrition affects development of the brain and have attempted to integrate several broad principles, concepts, and trends in this field in relation to our findings and other studies of malnutrition insults. Nutrition is probably the single greatest environmental influence both on the fetus and neonate, and plays a necessary role in the maturation and functional development of the central nervous system. Prenatal protein malnutrition adversely affects the developing brain in numerous ways, depending largely on its timing in relation to various developmental events in the brain and, to a lesser extent, on the type and severity of the deprivation. Many of the effects of prenatal malnutrition are permanent, though some degree of amelioration may be produced by exposure to stimulating and enriched environments. Malnutrition exerts its effects during development, not only during the so-called brain growth spurt period, but also during early organizational processes such as neurogenesis, cell migration, and differentiation. Malnutrition results in a variety of minimal brain dysfunction-type syndromes and ultimately affects attentional processes and interactions of the organism with the environment, in particular producing functional isolation from the environment, often leading to various types of learning disabilities. In malnutrition insult, we are dealing with a distributed, not focal, brain pathology and various developmental failures. Quantitative assessments show distorted relations between neurons and glia, poor formation of neuronal circuits and alterations of normal regressive events, including cell death and axonal and dendritic pruning, resulting in modified patterns of brain organization. Malnutrition insult results in deviations in normal age-related sequences of brain maturation, particularly affecting coordinated development of various cell types and, ultimately, affecting the formation of neuronal circuits and the commencing of activity of neurotransmitter cell types and, ultimately, affecting the formation of neuronal circuits and the commencing of activity of neurotransmitter systems. It is obvious that such diffuse type "lesions" can be adequately assessed only by interdisciplinary studies across a broad range of approaches, including morphological, biochemical, neurophysiological, and behavioral analyses.

PMID:
8455820
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk