Send to:

Choose Destination
See comment in PubMed Commons below
Mol Cell Biol. 1993 Mar;13(3):1805-14.

Transcriptional repression in Saccharomyces cerevisiae by a SIN3-LexA fusion protein.

Author information

  • 1Department of Cellular, Viral, and Molecular Biology, University of Utah Medical Center, Salt Lake City 84132.


The yeast SIN3 gene (also known as SDI1, UME4, RPD1, and GAM2) has been identified as a transcriptional regulator. Previous work has led to the suggestion that SIN3 regulates transcription via interactions with DNA-binding proteins. Although the SIN3 protein is located in the nucleus, it does not bind directly to DNA in vitro. We have expressed a LexA-SIN3 fusion protein in Saccharomyces cerevisiae and show that this fusion protein represses transcription from heterologous promoters that contain lexA operators. The predicted amino acid sequence of the SIN3 protein contains four copies of a paired amphipathic helix (PAH) motif, similar to motifs found in HLH (helix-loop-helix) and TPR (tetratricopeptide repeat) proteins, and these motifs are proposed to be involved in protein-protein interactions. We have conducted a deletion analysis of the SIN3 gene and show that the PAH motifs are required for SIN3 activity. Additionally, the C-terminal region of the SIN3 protein is sufficient for repression activity in a LexA-SIN3 fusion, and deletion of a PAH motif in this region inactivates this repression activity. A model is presented in which SIN3 recognizes specific DNA-binding proteins in vivo in order to repress transcription.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk