Send to:

Choose Destination
See comment in PubMed Commons below
J Nucl Med. 1993 Mar;34(3):414-9.

Does FDG uptake measure proliferative activity of human cancer cells? In vitro comparison with DNA flow cytometry and tritiated thymidine uptake.

Author information

  • 1Department of Internal Medicine, University of Michigan, Ann Arbor.


The relationship between 3H-2-fluoro-2-deoxy-D-glucose (FDG) uptake and the proliferative rate of a human ovarian adenocarcinoma cell line (HTB77IP3) was examined in vitro. HTB77IP3 cells were plated and allowed to grow through lag, exponential and plateau phases. Proliferative rate assessed by DNA flow cytometry and 3H-thymidine incorporation was highest in the lag phase and fell significantly as the cells progressed from the exponential through plateau phases. By DNA flow cytometry, the proliferation index (% of S+G2/M phase cells) fell from 65% to 23%. Thymidine uptake per cell also declined, by 82%, from lag to plateau phase. By contrast, 3H-FDG uptake per cell was largely unchanged as the cells progressed through the cell growth cycle. Total 3H-FDG uptake was strongly correlated with the number of viable cancer cells present (r = 0.957). Total thymidine uptake, however, substantially underestimated the number of viable cancer cells present. These in vitro differences in tracer uptake suggest that in this adenocarcinoma cell line, FDG measures a substantially different parameter (viable cell number) than thymidine (proliferative rate) and that these differences may result in disparate findings on PET imaging of cancers using these two tracers. Our data for this in vitro system indicate that FDG uptake does not relate to the proliferative activity of cancer cells. However, FDG uptake is strongly related to the number of viable tumor cells.

Comment in

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Icon for HighWire
    Loading ...
    Write to the Help Desk