The mechanical properties of skeletally mature rabbit anterior cruciate ligament and patellar tendon over a range of strain rates

J Orthop Res. 1993 Jan;11(1):58-67. doi: 10.1002/jor.1100110108.

Abstract

The effect of strain rate on the mechanical properties of the rabbit anterior cruciate ligament (ACL) and patellar tendon (PT) was evaluated. The medial portion of the ACL was loaded to tensile failure at rates of 0.003, 0.3, and 113 mm/s, and the middle third of the PT was loaded at rates of 0.008, 0.8, and 113 mm/s. The load was recorded with a high-speed measurement plotting system, and each test was videotaped for strain analysis. The nonlinear portion of the stress-strain curve was curve-fit to an exponential function having two nonlinear constants, representing the initial modulus and rate of change of the modulus. The modulus of the rabbit PT was found to be 89% higher than that of the ACL. The initial modulus and rate of change of the modulus also were greater for the PT than for the ACL. The modulus of the PT was shown to be more sensitive to strain rate than that of the ACL; a 94% increase was observed for the PT, and a 31% increase was observed for the ACL. There was no effect of strain rate on the mode of failure of either the ACL or the PT; all but three of the specimens failed at the insertion site.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Anterior Cruciate Ligament / physiology*
  • Biomechanical Phenomena
  • Male
  • Patella / physiology*
  • Rabbits
  • Stress, Mechanical
  • Tendons / physiology*