Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Bacteriol. 1993 Jan;175(2):377-85.

Purification and properties of the physically associated meta-cleavage pathway enzymes 4-hydroxy-2-ketovalerate aldolase and aldehyde dehydrogenase (acylating) from Pseudomonas sp. strain CF600.

Author information

  • 1Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, Canada.

Abstract

The final two steps in the dmp operon-encoded meta-cleavage pathway for phenol degradation in Pseudomonas sp. strain CF600 involve conversion of 4-hydroxy-2-ketovalerate to pyruvate and acetyl coenzyme A (acetyl-CoA) by the enzymes 4-hydroxy-2-ketovalerate aldolase and aldehyde dehydrogenase (acylating) [acetaldehyde:NAD+ oxidoreductase (CoA acetylating), EC 1.2.1.10]. A procedure for purifying these two enzyme activities to homogeneity is reported here. The two activities were found to copurify through five different chromatography steps and ammonium sulfate fractionation, resulting in a preparation that contained approximately equal proportions of two polypeptides with molecular masses of 35 and 40 kDa. Amino-terminal sequencing revealed that the first six amino acids of each polypeptide were those deduced from the previously determined nucleotide sequences of the corresponding dmp operon-encoded genes. The isolated complex had a native molecular mass of 148 kDa, which is consistent with the presence of two of each polypeptide per complex. In addition to generating acetyl-CoA from acetaldehyde, CoA, and NAD+, the dehydrogenase was shown to acylate propionaldehyde, which would be generated by action of the meta-cleavage pathway enzymes on the substrates 3,4-dimethylcatechol and 4-methylcatechol. 4-Hydroxy-2-ketovalerate aldolase activity was stimulated by the addition of Mn2+ and, surprisingly, NADH to assay mixtures. The possible significance of the close physical association between these two polypeptides in ensuring efficient metabolism of the short-chain aldehyde generated by this pathway is discussed.

PMID:
8419288
[PubMed - indexed for MEDLINE]
PMCID:
PMC196151
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk