Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
Nucleic Acids Res. 1993 Sep 11;21(18):4239-45.

Stability, structure and complexity of yeast chromosome III.

Author information

  • Breeding and Genetics Department, Horticulture Research International, Wellesbourne, Warwick, UK.


The complete sequence of yeast chromosome III provides a model for studies relating DNA sequence and structure at different levels of organisation in eukaryotic chromosomes. DNA helical stability, intrinsic curvature and sequence complexity have been calculated for the complete chromosome. These features are compartmentalised at different levels of organisation. Compartmentalisation of thermal stability is observed from the level delineating coding/non-coding sequences, to higher levels of organisation which correspond to regions varying in G + C content. The three-dimensional path reveals a symmetrical structure for the chromosome, with a densely packed central region and more diffuse and linear subtelomeric regions. This interspersion of regions of high and low curvature is reflected at lower levels of organisation. Complexity of n-tuplets (n = 1 to 6) also reveals compartmentalisation of the chromosome at different levels of organisation, in many cases corresponding to the structural features. DNA stability, conformation and complexity delineate telomeres, centromere, autonomous replication sequences (ARS), transposition hotspots, recombination hotspots and the mating-type loci.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk