Heterogeneity of rat corticospinal neurons

J Comp Neurol. 1993 Sep 1;335(1):92-108. doi: 10.1002/cne.903350107.

Abstract

In order to examine the degree of diversity within a population of cortical projection neurons, rat corticospinal cells were retrogradely labeled in vivo by injecting rhodamine-tagged microspheres into the cervical spinal cord, and subsequently studied electrophysiologically and anatomically in neocortical slices maintained in vitro, by use of standard current clamp techniques and a double-labeling protocol (Tseng et al., J. Neurosci. Meth. 37:121-131, 1991). Three different subgroups were distinguished on the basis of their spiking behavior: (1) Adapting cells had a marked fast (50 ms) and slow phase (200 ms) of spike frequency adaptation; (2) regular spiking (RS) cells had only a period of fast adaptation; (3) some regular spiking neurons had prominent depolarizing afterpotentials (DAPs) and could generate bursts of spikes, often in repetitive fashion (RSDAP cells). Subgroups of RSDAP cells had different patterns of burst responses to depolarizing current pulses, suggesting differences in the types and/or sites of underlying ionic conductances. Adapting cells had a slightly higher membrane input resistance and more prominent slow hyperpolarizing afterpotentials than RS and RSDAP neurons; however, the activation of presumed anomalous rectifier current by intracellular hyperpolarizations was less prominent in adapting neurons. Orthodromic stimulation in layer I evoked presumed excitatory and inhibitory postsynaptic potentials (EPSPs and IPSPs)in all three types of cells, but prominent short-latency IPSPs were found in a higher percentage of adapting neurons. The morphology of electrophysiologically characterized corticospinal neurons was studied following intracellular injection of biocytin. All three spiking types were typical layer V pyramids with apical dendrites reaching layer 1, basal dendrites in infragranular layers, and deep-directed axons that had a moderate density of local collaterals in lower cortical layers. The profuseness of dendrites, examined by Sholl's analysis of two-dimensional, camera lucida-reconstructed neurons was comparable in the three neuronal subgroups, although a smaller somatic area and more slender apical dendritic trunk were found in adapting neurons. Our results suggest that corticospinal cells in rats are a heterogeneous population of projection neurons with respect to their spiking behavior, membrane properties, synaptic connections, and, to a lesser extent, their morphology. This diversity revealed in vitro adds new complexity to the classification of corticospinal neurons.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Action Potentials / physiology
  • Adaptation, Physiological
  • Animals
  • In Vitro Techniques
  • Microelectrodes
  • Neurons / cytology
  • Neurons / physiology*
  • Pyramidal Tracts / cytology
  • Pyramidal Tracts / physiology*
  • Rats
  • Rats, Sprague-Dawley / physiology*