Send to:

Choose Destination
See comment in PubMed Commons below
J Clin Invest. 1993 Sep;92(3):1314-25.

Effect of secretion on intracellular pH regulation in isolated rat bile duct epithelial cells.

Author information

  • 1Department of Internal Medicine, Yale University, School of Medicine, New Haven, Connecticut 06510.


The effects of secretin on ion transport mechanisms involved in regulation of intracellular pH (pHi) and HCO3- excretion were characterized in bile duct epithelial (BDE) cells isolated from normal rat liver. pHi was measured with 2,7-bis(carboxy-ethyl)-5(6)-carboxy-fluorescein-acetomethylester (BCECF-AM) using a microfluorimetric method. Basal pHi of BDE was 7.04 +/- 0.06 in Hepes and 7.16 +/- 0.10 in KRB and was unaffected by secretin (50-200 nM). Recovery rates from an acid load in Hepes or in KRB media (with and without amiloride) were also not altered by secretin, indicating that Na+/H+ exchange and Na+/HCO3- cotransport were not affected by this hormone. After acute Cl- removal, pHi rose 0.24 +/- 0.08 pHU at a maximal rate of 0.125 +/- 0.06 pHU/min (H+ flux rates = 6.02 +/- 3.27 mM/min) and recovered after Cl- readmission (0.188 +/- 0.08 pHU/min; H+ flux rates = 11.82 +/- 5.34 mM/min). Pretreatment with 1 mM DIDS inhibited the effects of Cl- removal, while valinomycin, which induces cell depolarization, enhanced these effects, probably by stimulating electrogenic HCO3- influx. Secretin significantly increased both the maximal rate of alkalinization after Cl- removal (P < 0.012) and of pHi recovery after Cl- readmission (P < 0.025), indicating stimulation of Cl-/HCO3- exchange activity. These findings were reproduced with N6,2'-O-Dibutyryladenosine-3',5'-cyclic monophosphate (DBcAMP). The Cl- channel blocker 5-nitro-2'-(3-phenylpropylamino)-benzoate (NPPB, 10 microM) significantly decreased the effects of secretin and DBcAMP on the pHi changes promoted by acute Cl- removal/readmission. These findings establish that secretin stimulates the activity of the Cl-/HCO3- exchanger in BDE cells, probably by activating Cl- channels via the intracellular messenger cAMP. This in turn depolarizes the cell, stimulating electrogenic Na+/HCO3- symport. The cell depolarization induced by Cl- channel activation should enhance HCO3- entrance through electrogenic Na+/HCO3- symport, which in turn stimulates the Cl-/HCO3- exchange. These mechanisms could account for secretin stimulated bicarbonate secretion in bile.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Journal of Clinical Investigation Icon for PubMed Central
    Loading ...
    Write to the Help Desk