Send to

Choose Destination
See comment in PubMed Commons below
Nature. 1993 Apr 15;362(6421):640-2.

Phosphorylation and regulation of glutamate receptors by calcium/calmodulin-dependent protein kinase II.

Author information

  • 1Vollum Institute, Oregon Health Sciences University, Portland 97201.


The major postsynaptic density (PSD) protein at glutaminergic synapses is calcium/calmodulin-dependent protein kinase II (CaM-K II), but its function in the PSD is not known. We have examined glutamate receptors (GluRs) as substrates for CaM-K II because (1) they are colocalized in the PSD, (2) cloned GluRs contain consensus phosphorylation sites for protein kinases including CaM-K II, and (3) several GluRs are regulated by other protein kinases. Regulation of GluRs, which are involved in excitatory synaptic transmission and in mechanisms of learning and memory, by CaM-K II is of interest because of the postulated role of CaM-K II in synaptic plasticity and its known involvement in induction of long-term potentiation. Furthermore, mice lacking the major neural isoform of CaM-K II exhibit deficits in models of learning and memory that require hippocampal input. We report here that CaM-K II phosphorylates GluR in several in vitro systems, including the PSD, and that activated CaM-K II enhances kainate-induced ion current three- to fourfold in cultured hippocampal neurons. These results are consistent with a role for PSD CaM-K II in strengthening postsynaptic GluR responses in synaptic plasticity.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Write to the Help Desk