Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
J Neurosci. 1993 Sep;13(9):3916-25.

Spatial learning impairment parallels the magnitude of dorsal hippocampal lesions, but is hardly present following ventral lesions.

Author information

  • 1Department of Neurophysiology, University of Oslo, Norway.

Abstract

The hippocampus plays an essential role in spatial learning. To investigate whether the whole structure is equally important, we compared the effects of variously sized and localized hippocampal aspiration lesions on spatial learning in a Morris water maze. The volume of all hippocampal lesions was determined. Dorsal hippocampal lesions consistently impaired spatial learning more than equally large ventral lesions. The dorsal lesions had to be larger than 20% of the total hippocampal volume to prolong final escape latencies. The acquisition rate and precision on a probe test without platform were sensitive to even smaller dorsal lesions. The degree of impairment correlated with the lesion volume. In contrast, the lesions of the ventral half of the hippocampus spared both the rate and the precision of learning unless nearly all of the ventral half was removed. There was no significant effect of the location (dorsal or ventral) of damage to the overlying neocortex only. In conclusion, the dorsal half of the hippocampus appears more important for spatial learning than the ventral half. The spatial learning ability seems related to the amount of damaged dorsal hippocampal tissue, with a threshold at about 20% of the total hippocampal volume, under which normal learning can occur.

PMID:
8366351
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk