[Development of topical drug delivery systems utilizing polymeric materials]

Yakugaku Zasshi. 1993 May;113(5):356-68. doi: 10.1248/yakushi1947.113.5_356.
[Article in Japanese]

Abstract

Topical drug delivery is important from the view points of improvement of therapeutic effect and reduction of systemic side effects. Utilization of polymeric materials seemed to be as a key for the development of new topical dosage forms including targeting drug delivery systems. Adriamycin ointment for local chemotherapy to breast cancer prepared using polyethylene glycol, ammonium polyacrylate and hydroxypropyl cellulose (HPC) according to an optimum formulation showed an excellent clinical effect in spite of a decreased drug content. Double-layered mucoadhesive sticks for the treatment of uterine cervix cancer were prepared by direct compression of powder mixture of bleomycin, HPC and carboxyvinyl polymer (CP). Drug release property of the sticks could be controlled by the weight of outer layer, drug combining ratio to each layer and coating of core layer. The results suggested a possibility of a "once-a-week" treatment that is preferable for the patients. Magnetic granules for the treatment of esophageal cancer were prepared using ferrite, HPC and CP. Magnetic guidance and retainment of the granules on esophageal mucosa were confirmed using rabbits in vivo. Buoyant sustained release preparations were prepared using chitosan, soybean protein, HPC and other polymers. Usefulness of the buoyant preparations was suggested from the results in vitro and in vivo. Insulin microspheres (IMS) for targeting delivery to the small intestine were prepared by the newly developed method. Employment of enteric coating material (Eudragit) and combination of protease inhibitor protected insulin from enzymatic attack and gave decreased levels of blood glucose by oral administration.

Publication types

  • English Abstract
  • Review

MeSH terms

  • Administration, Topical
  • Animals
  • Biological Availability
  • Dosage Forms
  • Drug Delivery Systems*
  • Humans
  • Microspheres
  • Polymers*
  • Therapeutic Equivalency

Substances

  • Dosage Forms
  • Polymers