Send to

Choose Destination
See comment in PubMed Commons below
Anat Embryol (Berl). 1993 Nov;188(5):481-92.

Tropoelastin gene expression in the developing vascular system of the chicken: an in situ hybridization study.

Author information

  • 1Laboratoire de Biologie du Tissu Conjonctif, CNRS URA 1460, Faculté de Médecine, Université de Paris XII, Créteil, France.


Temporal and spatial patterns in the accumulation of Tropoelastin (TE) mRNA during development of the chick embryo were established by in situ hybridization. Radiolabeled oligonucleotide probes of high specific activity were hybridized to serial sections of the cardiovascular system from embryonic day 3.5 (ED 3.5) to ED 19. Tropoelastin mRNA was observed as early as ED 3.5 in the dorsal part of the arterial trunk. During septation varying levels of TE mRNA were seen in the pulmonary trunk, the aorta and the aorticopulmonary septum. Thereafter TE mRNA levels increased up to ED 12, and the appearance of message was distributed distally in the walls of developing arteries. From ED 4.5 on, we found a decreasing proximo-distal gradient of the hybridization signal along the trunks and later along the main arteries (longitudinal gradient), and a radial gradient through the arterial vessel wall with the highest levels of TE mRNA in the outer layers of the media. Both gradients persisted in all major arterial vessels except in the proximal systemic and pulmonary trunks, where the original radial gradient was inverted or locally bimodal during the second half of development. The valvular region of aortic and pulmonary trunks showed particularly striking patterns of TE mRNA distribution, notably a prominent label on the endothelial cell layer on aortic and pulmonary valves. Outside the cardiovascular system, TE mRNA was mainly present in prochondral or perichondral cells in trachea and growing skeleton, and in the gap of growing joints. In kidney or nephric primordia, TE mRNA was only detectable in the wall of renal arteries. A hybridization signal was observed on mesenchyme of pulmonary septae at ED 16. Our results suggest a complex regulation of elastin gene expression during development, particularly within the proximal regions of the large arterial vessels.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk