Send to:

Choose Destination
See comment in PubMed Commons below
Nucleic Acids Res. 1993 Dec 11;21(24):5630-5.

Monovalent cation effects on intermolecular purine-purine-pyrimidine triple-helix formation.

Author information

  • 1Department of Tumor Biology, University of Texas M.D. Anderson Cancer Center, Houston 77030.


The binding of a 19-mer guanosine-rich oligodeoxyribonucleotide, TG3TG4TG4TG3T (ODN 1), to a complementary polypurine DNA target was investigated by DNase I footprinting and restriction endonuclease protection assays. Monovalent cations inhibited intermolecular purine-purine-pyrimidine triple-helical DNA formation, with K+ and Rb+ being most effective, followed by NH4+ and Na+. Li+ and Cs+ had little to no effect. Similar results were observed with the G/A-rich oligonucleotide AG3AG4AG4AG3AGCT. Kinetic studies indicated that monovalent cations interfered with oligonucleotide-duplex DNA association but did not significantly promote triplex dissociation. The observed order of monovalent cation inhibition of triplex formation is reminiscent of their effect on tetraplex formation with G/T-rich oligonucleotides. However, using electrophoretic mobility shift assays we found that the oligonucleotide ODN 1 did not appear to form a four-stranded species under conditions promoting tetraplex formation. Taken together, our data suggest that processes other than the self-association of oligonucleotides into tetraplexes might be involved in the inhibitory effect of monovalent cations on purine-pyrimidine-purine triplex formation.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk