Send to:

Choose Destination
See comment in PubMed Commons below
Development. 1993 Sep;119(1):233-45.

Even-numbered rhombomeres control the apoptotic elimination of neural crest cells from odd-numbered rhombomeres in the chick hindbrain.

Author information

  • 1MRC Brain Development Programme, United Medical School, Guy's Hospital, London.


Neural crest cells originate at three discontinuous levels along the rostrocaudal axis of the chick rhombencephalon, centred on rhombomeres 1 and 2, 4 and 6, respectively. These are separated by the odd-numbered rhombomeres r3 and r5 which are depleted of migratory neural crest cells. Here we show elevated levels of apoptosis in the dorsal midline of r3 and r5, immediately following the formation of these rhombomeres at the developmental stage (10-12) when neural crest cells would be expected to emerge at these neuraxial levels. These regions are also marked by their expression of members of the msx family of homeobox genes with msx-2 expression preceding apoptosis in a precisely colocalised pattern. In vitro and in ovo experiments have revealed that r3 and r5 are depleted of neural crest cells by an interaction within the neural epithelium: if isolated or distanced from their normal juxtaposition with even-numbered rhombomeres, both r3 and r5 produce migrating neural crest cells. When r3 or r5 are unconstrained in this way, allowing production of crest, msx-2 expression is concomitantly down regulated. This suggests a correlation between msx-2 and the programming of apoptosis in this system. The hindbrain neural crest is thus produced in discrete streams by mechanisms intrinsic to the neural epithelium. The crest cells that enter the underlying branchial region are organised into streams before they encounter the mesodermal environment lateral to the neural tube. This contrasts sharply with the situation in the trunk where neural crest production is uninterrupted along the neuraxis and the segmental accumulation of neurogenic crest cells is subsequently founded on an alternation of permissive and non-permissive qualities of the local mesodermal environment.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk