Format

Send to:

Choose Destination
See comment in PubMed Commons below
FASEB J. 1993 Dec;7(15):1434-41.

Extracellular matrix 6: role of matrix metalloproteinases in tumor invasion and metastasis.

Author information

  • 1Laboratory of Pathology, National Cancer Institute, DCBDC, National Institutes of Health, Bethesda, Maryland 20892.

Abstract

Tumor invasion and metastasis formation are major obstacles for successful cancer therapy. Metastasis is a complex multistep process that requires sequential interactions between the invasive cell and the extracellular matrix. A model system for tumor invasion of extracellular matrix barriers has been developed, and application of this model has facilitated our understanding of the molecular mechanisms of metastasis formation. This model consists of three steps: tumor cell adhesion, extracellular matrix proteolysis, and cell migration. The role of the matrix metalloprotease enzymes in tumor cell-mediated extracellular matrix proteolysis is well established. We review the functional domain structure of the matrix metalloprotease enzymes in general and specifically the interaction of metastasis-associated gelatinase A (72-kDa type IV collagenase) with the tissue inhibitor of metalloproteases-2 (TIMP-2). We also discuss the physiologic activation of the matrix metalloprotease enzymes and the specific cellular mechanism of action of gelatinase A.

PMID:
8262328
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk