Send to:

Choose Destination
See comment in PubMed Commons below
Appl Environ Microbiol. 1976 Jan;31(1):99-107.

Temperature limitation of methanogenesis in aquatic sediments.


Microbial methanogenesis was examined in sediments collected from Lake Mendota, Wisconsin, at water depths of 5, 10, and 18 m. The rate of sediment methanogenesis was shown to vary with respect to sediment site and depth, sampling date, in situ temperature, and number of methanogens. Increased numbers of methanogenic bacteria and rates of methanogenesis correlated with increased sediment temperature during seasonal change. The greatest methanogenic activity was observed for 18-m sediments throughout the sampling year. As compared with shallower sediments, 18-m sediment was removed from oxygenation effects and contained higher amounts of ammonia, carbonate, and methanogenic bacteria, and the population density of methanogens fluctuated less during seasonal change. Rates of methanogenesis in 18-m sediment cores decreased with increasing sediment depth. The optimum temperature, 35 to 42 C, for sediment methanogenesis was considerably higher than the maximum observed in situ temperature of 23 C. The conversion of H2 and [14C]carbonate to [14C]methane displayed the same temperature optimum when these substrates were added to sediments. The predominant methanogenic population had simple nutritional requirements and were metabolically active at 4 to 45 C. Hydrogen oxidizers were the major nutritional type of sediment methanogens; formate and methanol fermentors were present, but acetate fermentors were not observed. Methanobacterium species were most abundant in sediments although Methanosarcina, Methanococcus, and Methanospirillum species were observed in enrichment cultures. A chemolithotropic species of Methanosarcina and Methanobacterium was isolated in pure culture that displayed temperature optima above 30 C and had simple nutritional requirements.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk