Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 1994 May 24;91(11):4840-4.

Double-stranded DNA templates can induce alpha-helical conformation in peptides containing lysine and alanine: functional implications for leucine zipper and helix-loop-helix transcription factors.

Author information

  • 1Institute of Molecular Biology, University of Oregon, Eugene 97403.


Transcription factors of the basic-leucine zipper and basic-helix-loop-helix families specifically recognize DNA by means of intrinsically flexible peptide domains that assume an alpha-helical conformation upon binding to target DNA sequences. We have investigated the nonspecific interactions that underlie specific DNA recognition. Circular dichroism measurements showed that 20-bp double-stranded DNA oligonucleotides can act as templates to promote random coil-->alpha-helix transitions in short peptides containing alanine and lysine. This conformational change takes place without altering the structure of the DNA, and neither specific peptide-DNA contacts nor cooperative interactions between peptides are necessary. The conformational change does require (i) double-stranded (but not single-stranded) oligodeoxynucleotides in either the B or the B' conformation and (ii) peptides that can form positively charged amphipathic alpha-helices. In 10 mM Na2HPO4 (pH 7.5; 10 degrees C), the excess free-energy contribution of the DNA template to the stability of the alpha-helical form of the oligopeptides tested was delta Gex = -0.15 (+/- 0.07) kcal/mol per lysine residue. The implications of these results for the thermodynamics and kinetics of DNA target site selection by basic-leucine zipper and basic-helix-loop-helix regulatory proteins are discussed.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk