Format

Send to:

Choose Destination
See comment in PubMed Commons below
Int J Radiat Oncol Biol Phys. 1994 May 15;29(2):243-7.

The interaction of epidermal growth factor and radiation in human head and neck squamous cell carcinoma cell lines with vastly different radiosensitivities.

Author information

  • 1Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905.

Abstract

PURPOSE:

This study was performed to characterize the interaction of epidermal growth factor and radiation in two human head and neck squamous cell cancer cell lines of vastly different radiosensitivities (UM-SCC-6 Radiosensitive; UM-SCC-1 radioresistant).

METHODS AND MATERIALS:

The two human head and neck squamous cell cancers (UM-SCC-1 and UM-SCC-6) were grown in medium and following the appropriate treatments, cell survival was assessed by a standard colony formation assay. Growth inhibition was assessed by monitoring cell counts following treatment and flow cytometry was used to assess cell cycle distributions.

RESULTS AND CONCLUSION:

It was determined that exposure to epidermal growth factor (10 ng/ml) for 24 h prior to radiation resulted in radiosensitization in both cell lines, however, the magnitude of radiosensitization was greater in the radiosensitive UM-SCC-6 cells compared to the radioresistant UM-SCC-1 cells. Treatment of the UM-SCC-6 cells with epidermal growth factor (EGF) (10 ng/ml) for 24 h resulted in a growth delay, however, cell growth returned to normal approximately 24 h following removal of EGF. Similar treatment of the UM-SCC-1 cells resulted in no growth inhibition. The 24 h pre-radiation exposures to EGF (10 ng/ml) did not affect the radiation-induced growth delay in either cell line. Additionally, the 24 h exposures to EGF (10 ng/ml) did not affect the radiation-induced growth delay in either cell line. Additionally, the 24 h exposures to EGF (10 ng/ml) did not cause the cells to enter a more radiosensitive cell cycle phase. Further work will be necessary to determine whether events associated with the EGF-induced growth delay in the UM-SCC-6 cells are associated with the enhanced EGF-induced radiosensitization in these cells compared to UM-SCC-1 cells.

PMID:
8195014
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk