Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Mol Microbiol. 1994 Jan;11(2):315-21.

Nodulating ability of Rhizobium tropici is conditioned by a plasmid-encoded citrate synthase.

Author information

  • 1Departamento de Genética Molecular, Centro de Investigación sobre Fijación de Nitrógeno, UNAM, México.

Abstract

Rhizobium species elicit the formation of nitrogen-fixing root nodules through a complex interaction between bacteria and plants. Various bacterial genes involved in the nodulation and nitrogen-fixation processes have been described and most have been localized on the symbiotic plasmids (pSym). We have found a gene encoding citrate synthase on the pSym plasmid of Rhizobium tropici, a species that forms nitrogen-fixing nodules on the roots of beans (Phaseolus vulgaris) and trees (Leucaena spp.). Citrate synthase is a key metabolic enzyme that incorporates carbon into the tricarboxylic acid cycle by catalysing the condensation of acetyl-CoA and oxaloacetic acid to form citrate. R. tropici pcsA (the plasmid citrate synthase gene) is closely related to the corresponding genes of Proteobacteria. pcsA inactivation by a Tn5-mob insertion causes the bacteria to form fewer nodules (30-50% of the original strain) and to have a decreased citrate synthase activity in minimal medium with sucrose. A clone carrying the pcsA gene complemented all the phenotypic alterations of the pcsA mutant, and conferred Rhizobium leguminosarum bv. phaseoli (which naturally lacks a plasmid citrate synthase gene) a higher nodulation and growth capacity in correlation with a higher citrate synthase activity. We have also found that pcsA gene expression is sensitive to iron availability, suggesting a possible role of pcsA in iron uptake.

PMID:
8170393
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Blackwell Publishing
    Loading ...
    Write to the Help Desk