Format

Send to

Choose Destination
See comment in PubMed Commons below
Vision Res. 1994 Mar;34(5):591-605.

Visual pigments and the photic environment: the cottoid fish of Lake Baikal.

Author information

  • 1Institute of Ophthalmology, University of London, U.K.

Abstract

The endemic cottoid fish of Lake Baikal in Eastern Siberia offer a singular opportunity for examining within a number of closely related species, the relationships of visual pigments, photoreceptor complements and depth within a deep freshwater environment. The lake, the deepest (1600 m) and one of the largest and most ancient in the world, is unique in that the oxygen levels at the bottom are only reduced to about 80% of the surface levels. We have studied, by light microscopy, microspectrophotometry and visual pigment extraction, the retinas from 17 species of Baikal cottoids that live at different depths within the lake. Generally the retinas contain, in addition to rods, large green-sensitive double cones and small blue-sensitive single cones: surprisingly for freshwater fish, the visual pigments are based on Vitamin A1. The lambda max of both rods and cones are displaced to shorter wavelengths with increasing depth. Surface species have cones with lambda max at about 546, 525 and 450 nm and rods at 523 nm, deeper living species retain cones, but with lambda max shifting towards 500 and 425 nm and with rods at 480 nm, whereas the deepest living fish possess only rods (lambda max 480-500 nm). These data clearly show a correlation between photoreceptor complement, visual pigment lambda max and depth, but question the hypothesis that there is a correlation of pigment lambda max with water colour since, in contrast to oceanic waters, the maximum transmission of Baikal water is between 550 and 600 nm.

PMID:
8160379
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk