Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 1994 Apr 8;269(14):10431-7.

Cloning the structural gene for the 49-kDa form of exoenzyme S (exoS) from Pseudomonas aeruginosa strain 388.

Author information

  • 1Department of Microbiology, Medical College of Wisconsin, Milwaukee 53226.

Abstract

We report the purification and proteolytic characterization of the 49-kDa form of exoenzyme S and the cloning of the structural gene for the 49-kDa form of exoenzyme S (exoS). The 49-kDa form of exoenzyme S was purified from SDS-polyacrylamide gels. Conditions were established that allowed efficient trypsin digestion of the 49-kDa form of exoenzyme S. Amino acid sequence determination of the amino terminus and tryptic peptides of the 49-kDa form of exoenzyme S allowed the generation of degenerate oligonucleotides, which were used to amplify DNA encoding an amino-terminal sequence and an internal sequence of the 49-kDa form of exoenzyme S. These DNA fragments were used to clone the entire structural gene for the 49-kDa form of exoenzyme S (exoS) from a cosmid library of Pseudomonas aeruginosa strain 388. The 49-kDa form of exoenzyme S (ExoS) is predicted to be a 453 amino acid protein. The predicted amino acid sequence indicates that ExoS is secreted from Pseudomonas without cleavage of an amino-terminal sequence. BESTFIT analysis identified three regions of alignment between ExoS and the active site of Escherichia coli heat-labile enterotoxin. One region of homology appears to be shared among several members of the family of bacterial ADP-ribosyltransferases.

PMID:
8144626
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk