Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Nature. 1994 Apr 7;368(6471):561-3.

DNA-like double helix formed by peptide nucleic acid.

Author information

  • 1Department of Physical Chemistry, Chalmers University of Technology, Gothenburg, Sweden.

Abstract

Although the importance of the nucleobases in the DNA double helix is well understood, the evolutionary significance of the deoxyribose phosphate backbone and the contribution of this chemical entity to the overall helical structure and stability of the double helix is not so clear. Peptide nucleic acid (PNA) is a DNA analogue with a backbone consisting of N-(2-aminoethyl)glycine units (Fig. 1) which has been shown to mimic DNA in forming Watson-Crick complementary duplexes with normal DNA. Using circular dichroism spectroscopy we show here that two complementary PNA strands can hybridize to one another to form a helical duplex. There is a seeding of preferred chirality which is induced by the presence of an L- (or D-) lysine residue attached at the carboxy terminus of the PNA strand. These results indicate that a (deoxy)ribose phosphate backbone is not an essential requirement for the formation of double helical DNA-like structures in solution.

PMID:
8139692
[PubMed - indexed for MEDLINE]

LinkOut - more resources

Full Text Sources

Other Literature Sources

Molecular Biology Databases

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Nature Publishing Group
    Loading ...
    Write to the Help Desk