Send to:

Choose Destination
See comment in PubMed Commons below
J Bacteriol. 1994 Mar;176(6):1761-3.

Easy cloning of mini-Tn10 insertions from the Bacillus subtilis chromosome.

Author information

  • 1Laboratoire de Génétique des Microorganismes, URA537 du Centre National de La Recherche Scientifique, Institut National de la Recherche Agronomique, Thiverval-Grignon, France.


Delivery vectors for mini-Tn10 transposons function in Bacillus subtilis (M. A. Petit, C. Bruand, L. Janniére, and S. D. Ehrlich, J. Bacteriol. 172:6736-6740, 1990). Using this system, we identified a new gene (sytA) whose inactivation affected regulation of genes of sucrose metabolism. For cloning the sytA::Tn10 insertion in Escherichia coli, we developed a methodology similar to that commonly used for B. subtilis Tn917 insertions. We constructed a plasmid which can be used to insert (by in vivo recombination) a ColE1 origin linked to a spectinomycin resistance gene (ori-spc element) into mini-Tn10 transposons inserted into the B. subtilis chromosome. DNA extracted from a sytA::Tn10::ori-spc transformant was cut with restriction enzymes that do not cut into the Tn10::ori-spc sequence; plasmids containing the sytA::Tn10 insertion were cloned by self-ligation, followed by transformation of E. coli. To obtain the wild-type sytA region, one of these plasmids was ligated with an E. coli-B. subtilis shuttle vector conferring erythromycin resistance, and the hybrid was used to transform the wild-type B. subtilis strain. Erythromycin-resistant transformants, detected as spectinomycin sensitive, resulted from conversion of the insertion mutation by the resident wild-type locus. The shuttle plasmid containing the wild-type locus could then be recovered in E. coli.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk