Send to:

Choose Destination
See comment in PubMed Commons below
Carcinogenesis. 1993 Aug;14(8):1689-92.

Genotype/phenotype discordance for human arylamine N-acetyltransferase (NAT2) reveals a new slow-acetylator allele common in African-Americans.

Author information

  • 1Laboratory of Biochemical Risk Analysis, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709.


Carcinogenic arylamines are acetylated by the hepatic N-acetyltransferase. This enzyme is polymorphic in humans and in some epidemiological studies, the slow-acetylator phenotype has been associated with higher risk of bladder cancer and lower risk of colorectal cancer. The presence of two germline copies of any of several mutant alleles of the NAT2 gene produces a slow-acetylation phenotype. We used a PCR-RFLP technique to identify three known slow-acetylator alleles (M1, M2 and M3). Comparison of results from PCR-RFLP genotyping with caffeine metabolism phenotyping in 42 individuals suggested that an additional slow-acetylator allele was present in our sampled population. We sequenced the NAT2 gene for several discordant slow-acetylator individuals and found a G > A base-change in codon 64 that caused a Arg > Glu amino acid substitution. This sequence change, termed the 'M4' allele, was found in all of the discordant individuals in our population and apparently causes a slow-acetylation phenotype. In addition, we have determined that NAT2 allele frequencies in 372 Caucasian-Americans (WT = 0.25, M1 = 0.45, M2 = 0.28, M3 = 0.02, and M4 = 0.00) and in 128 African-Americans (WT = 0.36, M1 = 0.30, M2 = 0.22, M3 = 0.02 and M4 = 0.09) are significantly different (P < 0.0001). The M4 allele was not found in 372 unrelated Caucasians and appears to be of African origin.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk