Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Appl Environ Microbiol. 1994 Jul;60(7):2252-8.

Identification and characterization of clustered genes for thermostable xylan-degrading enzymes, beta-xylosidase and xylanase, of Bacillus stearothermophilus 21.

Author information

  • 1Department of Utilization of Biological Resources, Graduate School of Science and Technology, Kobe University, Japan.

Abstract

Bacillus stearothermophilus 21 is a gram-positive, facultative thermophilic aerobe that can utilize xylan as a sole source of carbon. We isolated this strain from soil, purified its extracellular xylanase and beta-xylosidase, and analyzed the two-step degradation of xylan by these enzymes (T. Nanmori, T. Watanabe, R. Shinke, A. Kohno, and Y. Kawamura, J. Bacteriol. 172:6669-6672, 1990). An Escherichia coli transformant carrying a 4.2-kbp chromosomal segment of this bacterium as a recombinant plasmid was isolated. It excreted active beta-xylosidase and xylanase into the culture medium. The plasmid was introduced into UV-sensitive E. coli CSR603, and its protein products were analyzed by the maxicell method. Proteins harboring beta-xylosidase and xylanase activities were identified, and their molecular masses were estimated by sodium dodecyl sulfate-polyarylamide gel electrophoresis to be 75 and 40 kDa, respectively. The values were identical to those of proteins prepared from cells of B. stearothermophilus 21. The genes for both enzymes were encoded in a 3.4-kbp PstI fragment derived from the 4.2-kbp chromosomal segment. The nucleotide sequence of the 4.2-kbp segment was accordingly determined. The beta-xylosidase gene (xylA) is located upstream of the xylanase gene (xynA) with a possible promoter and a Shine-Dalgarno sequence. The latter gene is preceded by two possible promoters and a Shine-Dalgarno sequence that are located within the 3'-terminal coding region of the former. The two genes thus appear to be, at least partly, expressed independently, which was experimentally confirmed in E. coli by deletion analysis.(ABSTRACT TRUNCATED AT 250 WORDS)

PMID:
8074507
[PubMed - indexed for MEDLINE]
PMCID:
PMC201640
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk