Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Mol Cell Biol. 1994 Sep;14(9):5619-27.

Suppression of a yeast cyclic AMP-dependent protein kinase defect by overexpression of SOK1, a yeast gene exhibiting sequence similarity to a developmentally regulated mouse gene.

Author information

  • 1Department of Molecular Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710.

Abstract

Saccharomyces cerevisiae cyclic AMP-dependent protein kinase (A kinase) activity is essential for growth and cell cycle progression. Dependence on A kinase function can be partially relieved by the inactivation of a second kinase encoded by the gene YAK1. We have isolated two new genes, SOK1 and SOK2 (suppressor of kinase), as gene dosage suppressors of the conditional growth defect of several temperature-sensitive A kinase mutants. Overexpression of SOK1, like lesions in YAK1, also restores growth to a strain (tpk1 tpk2 tpk3) lacking all A kinase activity. The SOK1 gene is not essential, but a sok1::HIS3 disruption abrogates suppression of an A kinase defect by yak1. These results suggest that Yak1 and Sok1 define a linear pathway that is partially redundant with that of the A kinase. Activation of Sok1, by SOK1 overexpression or by inactivation of the negative regulator Yak1, renders a cell independent of A kinase function. The implications of such a model are particularly intriguing in light of the nuclear localization pattern of the overexpressed Sok1 protein and the primary sequence homology between SOK1 and a recently described, developmentally regulated mouse gene.

PMID:
8065298
[PubMed - indexed for MEDLINE]
PMCID:
PMC359086
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk