Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Cell. 1994 Aug 12;78(3):499-512.

Ste5 tethers multiple protein kinases in the MAP kinase cascade required for mating in S. cerevisiae.

Author information

  • 1Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115.

Abstract

Ste5 is a Zn2+ finger-like protein thought to function before three kinases, Ste11 (a MEKK), Ste7 (a MEK), and Fus3 (a MAPK), in a conserved MAP kinase cascade required for mating in S. cerevisiae. Here, we present evidence that Ste5 forms a multikinase complex that joins these kinases for efficient Fus3 activation. By two-hybrid analysis, Ste11, Ste7, and Fus3 associate with different domains of Ste5, while Kss1, another MAPK, associates with the same domain as Fus3, thus implying that Ste5 simultaneously binds a MEKK, MEK, and MAPK. Ste5 copurifies with Ste11, Fus3, and a hypophosphorylated form of Ste7, and all four proteins cosediment in a glycerol gradient as if in a large complex. Ste5 also increases the amount of Ste11 complexed to Ste7 and Fus3 and is required for Ste11 to function. These results substantiate a novel signal transduction component that physically links multiple kinases within a single cascade.

PMID:
8062390
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk