Display Settings:

Format

Send to:

Choose Destination
Am J Physiol. 1994 Jul;267(1 Pt 2):R303-8.

Pharmacological dissociation of responses to CCK and gastric loads in rat mechanosensitive vagal afferents.

Author information

  • 1Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.

Abstract

To identify the transduction mechanisms underlying gastric vagal afferent responses to gastric loads and cholecystokinin (CCK), we investigated the ability of specific CCK antagonists, acute pylorectomy, and cholinergic blockade to effect these vagal afferent responses. The CCK-B antagonist L-365,260 (10 pmol-1 nmol) failed to block the gastric vagal afferent response to gastric loads or 100 pmol CCK, while the CCK-A antagonist devazepide (100 pmol-100 nmol) competitively and dose dependently attenuated the response to CCK but not to gastric loads. Application of 100 nmol of the low-affinity CCK receptor antagonist CCK-JMV-180 also completely blocked the gastric vagal afferent response to 100 pmol CCK. Acute pylorectomy failed to block the gastric vagal afferent response to 100 pmol CCK or 2-ml gastric loads. Atropine sulfate administration (15 mg/rat) failed to block the gastric vagal afferent response to 100 pmol CCK or 2-ml gastric loads. These data suggest that 1) the vagal afferent response to CCK is mediated through CCK's interactions with vagal, rather than pyloric, CCK-A receptors, and 2) the vagal afferent responses to CCK and to gastric loads are mediated by dissociable, possibly independent, transduction mechanisms.

PMID:
8048636
[PubMed - indexed for MEDLINE]

LinkOut - more resources

Full Text Sources

Other Literature Sources

Molecular Biology Databases

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire
    Loading ...
    Write to the Help Desk