Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Mol Cell Biol. 1994 Jul;14(7):4335-41.

JAK2 associates with the beta c chain of the receptor for granulocyte-macrophage colony-stimulating factor, and its activation requires the membrane-proximal region.

Author information

  • 1Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, Tennessee 38105.

Abstract

The high-affinity receptor for granulocyte-macrophage colony-stimulating factor (GM-CSF) consists of a unique alpha chain and a beta c subunit that is shared with the receptors for interleukin-3 (IL-3) and IL-5. Two regions of the beta c chain have been defined; these include a membrane-proximal region of the cytoplasmic domain that is required for mitogenesis and a membrane-distal region that is required for activation of Ras, Raf-1, mitogen-activated protein kinase, and S6 kinase. Recent studies have implicated the cytoplasmic protein tyrosine kinase JAK2 in signalling through a number of the cytokine receptors, including the IL-3 and erythropoietin receptors. In the studies described here, we demonstrate that GM-CSF stimulation of cells induces the tyrosine phosphorylation of JAK2 and activates its in vitro kinase activity. Mutational analysis of the beta c chain demonstrates that only the membrane-proximal 62 amino acids of the cytosolic domain are required for JAK2 activation. Thus, JAK2 activation is correlated with induction of mitogenesis but does not, alone, activate the Ras pathway. Carboxyl truncations of the alpha chain, which inactivate the receptor for mitogenesis, are unable to mediate GM-CSF-induced JAK2 activation. Using baculovirus-expressed proteins, we further demonstrate that JAK2 physically associates with the beta c chain but not with the alpha chain. Together, the results further support the hypothesis that the JAK family of kinase are critical to coupling cytokine binding to tyrosine phosphorylation and ultimately mitogenesis.

PMID:
8007942
[PubMed - indexed for MEDLINE]
PMCID:
PMC358804
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk