Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Arch Ophthalmol. 1994 Dec;112(12):1584-9.

Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography.

Author information

  • 1Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge.

Abstract

OBJECTIVE:

To demonstrate a new diagnostic technique, optical coherence tomography, for high-resolution cross-sectional imaging of structures in the anterior segment of the human eye in vivo. Optical coherence tomography is a new, noninvasive, noncontact optical imaging modality that has spatial resolution superior to that of conventional clinical ultrasonography (< 20 microns) and high sensitivity (dynamic range, > 90 dB).

DESIGN:

Survey of intraocular structure and dimension measurements.

SETTING:

Laboratory.

PATIENTS:

Convenience sample.

MAIN OUTCOME MEASURES:

Correlation with range of accepted normal intraocular structure profiles and dimensions.

RESULTS:

Direct in vivo measurements with micrometer-scale resolution were performed of corneal thickness and surface profile (including visualization of the corneal epithelium), anterior chamber depth and angle, and iris thickness and surface profile. Dense nuclear cataracts were successfully imaged through their full thickness in a cold cataract model in calf eyes in vitro.

CONCLUSIONS:

Optical coherence tomography has potential as a diagnostic tool for applications in noncontact biometry, anterior chamber angle assessment, identification and monitoring of intraocular masses and tumors, and elucidation of abnormalities of the cornea, iris, and crystalline lens.

PMID:
7993214
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Silverchair Information Systems
    Loading ...
    Write to the Help Desk