Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Exp Biol. 1994 Aug;193:49-64.

Effects of muscle length on the EMG-force relationship of the cat soleus muscle studied using non-periodic stimulation of ventral root filaments.

Author information

  • 1Faculty of Physical Education, Department of Clinical Neurosciences, University of Calgary, Alberta, Canada.

Abstract

The effects of changing the length of the cat soleus muscle on electromyographic (EMG) signals, muscle force and the corresponding EMG-force relationship were assessed using distributed stimulation of ten ventral root filaments and irregular interpulse intervals. EMG-force relationships were first determined for four muscle lengths using a protocol of simultaneous addition and rate modulation of ventral root filaments. In the second test, three submaximal levels of stimulation were applied at eight muscle lengths. EMG signals were obtained using surface and wire electrodes, and force was measured using a strain transducer. For most muscle lengths, the relationships between integrated EMG and mean force obtained using wire and surface electrodes were sigmoid with a linear intermediate region. The effects of muscle length on EMG signals were likely to be associated with movement of the recording electrodes relative to each other and to the active motor units. Mean forces increased with increasing muscle length and with increasing levels of stimulation. Mean force-length relationships obtained using submaximal stimulation were not simply scaled down versions of the force-length relationship obtained using supramaximal stimulation of the soleus nerve, but appeared to be shifted towards longer muscle lengths.

PMID:
7964399
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk