Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
J Biol Chem. 1994 Nov 18;269(46):28555-7.

Essential cysteine residues for cyclic ADP-ribose synthesis and hydrolysis by CD38.

Author information

  • 1Department of Biochemistry, Tohoku University School of Medicine, Miyagi, Japan.

Abstract

We have recently demonstrated that cyclic ADP-ribose (cADPR) serves as a second messenger for glucose-induced insulin secretion (Takasawa, S., Nata, K., Yonekura, H., and Okamoto, H. (1993) Science 259, 370-373) and that human leukocyte antigen CD38 has both ADP-ribosyl cyclase and cADPR hydrolase activities (Takasawa, S., Tohgo, A., Noguchi, N., Koguma, T., Nata, K., Sugimoto, T., Yonekura, H., and Okamoto, H. (1993) J. Biol. Chem. 268, 26052-26054). Although the amino acid sequence of Aplysia ADP-ribosyl cyclase exhibits a high degree of amino acid sequence identity with that of CD38, the Aplysia enzyme shows only ADP-ribosyl cyclase but not cADPR hydrolase. In the present study, we introduced site-directed mutations to CD38 and found that C119K- and/or C201E-CD38 exhibited only ADP-ribosyl cyclase activity. Furthermore, Aplysia ADP-ribosyl cyclase into which we introduced the mutations K95C and E176C, which correspond to residues 119 and 201 of human CD38, exhibited not only ADP-ribosyl cyclase activity but also cADPR hydrolase. These results indicate that cysteine residues 119 and 201 in CD38 have crucial roles in the synthesis and hydrolysis of cADPR.

PMID:
7961800
[PubMed - indexed for MEDLINE]
Free full text

LinkOut - more resources

Full Text Sources

Molecular Biology Databases

Miscellaneous

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk