Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Natl Cancer Inst. 1994 Nov 2;86(21):1627-34.

Identification of a potentially radiosensitive subgroup among patients with breast cancer.

Author information

  • 1Queensland Cancer Fund Research Unit, Queensland Institute of Medical Research, Bancroft Centre, Brisbane, Australia.

Abstract

BACKGROUND:

The description of genes and genetic syndromes, such as ataxia-telangiectasia, that predispose some women to breast cancer will provide greater insight into the genetic basis of cancer susceptibility.

PURPOSE:

Our goal was to establish cell lines from patients with breast and bladder cancers, to screen for enhanced levels of radiation-induced arrest in the G2 phase of the cell cycle such as is observed in ataxia-telangiectasia heterozygotes, and to correlate G2 arrest with other prognostic indicators of these cancers and in vivo radiosensitivity.

METHODS:

Epstein-Barr virus-transformed lymphoblastoid cells were established from 108 female patients with breast cancer and 24 age-matched female control subjects, and from 45 patients with bladder cancer and 18 age-matched control subjects. Cells were exposed to 3 Gy of gamma radiation, and the percentages of cells in G1 and G2 phases were determined at 18 and 24 hours after irradiation by fluorescence-activated cell sorter analysis. Postirradiation delay in G2 phase was determined by calculating the percentage of cells in G2 and by using the ratio G2/G1.

RESULTS:

When we determined the percentage of cells in G2 phase at 18 hours after irradiation in 108 lymphoblastoid cells from breast cancer patients, we observed an increase of between 3% and 38% in the number of cells in G2 phase in comparison with cells that were not irradiated. Comparison with previous G2-phase arrest data for ataxia-telangiectasia heterozygotes using a cutoff point at 29% delay demonstrated that 20% and 8% of the breast cancer cell lines of the case patients and control subjects, respectively, fell into that category (P < .001). At the same time after irradiation, it was not possible to distinguish between bladder cancer cell lines (7%) and those of the corresponding control group (6%). Assessment of radiation effects by G2/G1 ratio showed that 18% of the breast cancer patients and 8% of the control subjects were in the high range. When G2 arrest was correlated with other prognostic factors, we found that case patients with a greater G2 block were more likely to have had a family history of breast cancer (P < .006) and more aggressive tumors when assessed by number of involved lymph nodes (P < .002) and tumor size (P < .05). Furthermore, an adverse response to radiotherapy was observed in a group of patients with high G2 arrest.

IMPLICATIONS:

While the postirradiation increase in G2-phase arrest in cells from breast cancer patients observed in this study may indicate genetic heterozygosity for ataxia-telangiectasia, it might also reflect other genetic abnormalities important to breast cancer.

Comment in

PMID:
7932827
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire
    Loading ...
    Write to the Help Desk