Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Pharmacol Exp Ther. 1995 Mar;272(3):1170-5.

Effect of 5-HT1A receptor agonists and antagonists on canine cataplexy.

Author information

  • 1Sleep Research Center, Stanford University School of Medicine, Palo Alto, CA.

Abstract

Pharmacological studies using a canine model of narcolepsy have demonstrated that adrenergic rather than serotonergic or dopaminergic uptake inhibition is the primary mode of action of antidepressants on cataplexy, a pathological manifestation of rapid eye movement (REM) sleep atonia that occurs in narcolepsy. This result is in line with the known involvement of adrenergic systems in the regulation of REM sleep. However, the lack of anticataplectic effects of selective serotonergic compounds was puzzling as serotonergic neurons of the dorsal raphe nuclei are known to decrease activity during the REM sleep in a manner similar to the adrenergic neurons of the locus coeruleus. To further explore the role of serotonergic systems, we tested the effect on canine cataplexy of six 5-HT1A agonists and five 5-HT1A antagonists. Results indicate that 5-HT1A agonists significantly suppress cataplexy in correlation with their in vitro affinities to the canine central 5-HT1A receptors. Anticataplectic effects were, however, accompanied by various behavioral changes, such as flattened body posture, increased panting and agitation. In contrast, the selective 5-HT1A antagonist did not aggravate cataplexy, although a 5-HT1A antagonist was able to block the anticataplectic effect of a 5-HT1A agonist. These results suggest that the anticataplectic effects of 5-HT1A agonists are truly mediated by 5-HT1A receptor stimulation. It is, however, likely that anticataplectic effects occur due to the behavioral side effects rather than the direct involvement of this receptor subtype in the regulation of cataplexy. Further studies are therefore necessary to address the question of whether these 5-HT1A agonists hold promise in the pharmacological treatment of human cataplexy.

PMID:
7891329
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire
    Loading ...
    Write to the Help Desk