Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Magn Reson Imaging. 1994 Nov-Dec;4(6):853-67.

Effects of physiologic waveform variability in triggered MR imaging: theoretical analysis.

Author information

  • 1Department of Medical Biophysics, University of Western Ontario, Canada.

Abstract

One of the assumptions inherent in most forms of triggered magnetic resonance (MR) imaging is that the pulsatile waveform (be it cardiac, respiratory, or some other) is purely periodic. In reality, the periodicity condition is rarely met. Physiologic waveform variability may lead to image artifacts and errors in velocity or volume flow rate estimates. The authors analyze the effects of physiologic waveform variability in triggered MR imaging. They propose that this variability be treated as a modulation of the underlying motion waveform. This report concentrates on amplitude modulation of the velocity waveform, which results in amplitude and phase modulation of the transverse magnetization. Established Fourier and modulation theory and the recently described principles of (k,t)-space were used to derive the appearance of physiologic waveform variability artifacts in triggered MR images and to predict errors in time-averaged and instantaneous velocity estimates that may result from such motion effects, including effects such as ghost overlap. Simulations and experimental results are provided to confirm the theory.

PMID:
7865947
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk