Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Proc Natl Acad Sci U S A. 1995 Feb 14;92(4):1127-31.

Quinoxalines block the mechanism of directional selectivity in ganglion cells of the rabbit retina.

Author information

  • 1Department of Ophthalmology and Visual Science, Yale School of Medicine, New Haven, CT 06520-8061.

Abstract

Direction selectivity is a receptive field property displayed by neurons throughout the visual system. Previous experiments have concentrated on the role of lateral connections that use gamma-aminobutyric acid and acetylcholine. We have examined the role of excitatory amino acid receptors on direction-selective ganglion cell function in the rabbit retina. Application of the quinoxalines, a group of kainate/alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor antagonists, selectively blocked the directional-selectivity mechanism, leaving cells responsive to both directions of movement. In contrast, direction selectivity was unaffected by N-methyl-D-aspartate receptor antagonists or L-2-amino-4-phosphonobutyric acid. Large reductions in acetylcholine release by starburst amacrine cells appear to parallel losses of direction selectivity observed in the quinoxalines. These results shed additional insights into the mechanism of direction selectivity.

PMID:
7862647
[PubMed - indexed for MEDLINE]
PMCID:
PMC42651
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk